Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
Federated learning (FL) enables the building of robust and generalizable AI models by leveraging diverse datasets from multiple collaborators without centralizing the data. We created NVIDIA FLARE as an open-source software development kit (SDK) to make it easier for data scientists to use FL in their research and real-world applications. The SDK includes solutions for state-of-the-art FL algorithms and federated machine learning approaches, which facilitate building workflows for distributed learning across enterprises and enable platform developers to create a secure, privacy-preserving offering for multiparty collaboration utilizing homomorphic encryption or differential privacy. The SDK is a lightweight, flexible, and scalable Python package, and allows researchers to bring their data science workflows implemented in any training libraries (PyTorch, TensorFlow, XGBoost, or even NumPy) and apply them in real-world FL settings. This paper introduces the key design principles of FLARE and illustrates some use cases (e.g., COVID analysis) with customizable FL workflows that implement different privacy-preserving algorithms. Code is available at https://github.com/NVIDIA/NVFlare.
translated by 谷歌翻译
有丝分裂细胞的描述是肿瘤诊断的关键特征。但是,由于有丝分裂细胞形态的变异性,检测肿瘤组织中有丝分裂细胞是一项高度挑战的任务。同时,尽管先进的深度学习方法在细胞检测方面取得了巨大成功,但从另一个域(即不同的肿瘤类型和不同的扫描仪)测试数据时,性能通常是不令人满意的。因此,有必要开发用于检测域中稳健性的有丝分裂细胞的算法。我们的工作进一步提出了基于基线(视网膜)的前景检测和肿瘤分类任务,并利用数据扩展来改善模型的域泛化性能。我们在具有挑战性的前测试数据集上实现了最先进的性能(F1分数:0.5809)。
translated by 谷歌翻译
近年来,Experts(MOE)的混合物已成为一种有前途的深度学习技术,可以将模型能力扩展为万亿多个参数,同时通过稀疏计算降低计算成本。虽然MoE开设了一个非常大的模型的新领域,但由于MOE的动态性质与系统的静态平行性/管道层之间的不匹配,因此其数以千计的GPU的实现受到限制。我们提出了Tutel,这是一种具有动态自适应并行性和管道的高度可扩展的堆栈设计和实现。 TUTEL在运行时提供自适应并行性切换和自适应管道,分别达到1.74倍和2.00倍的单MOE层加速度。我们还提出了一种用于MOE通信速度的新颖的二维层次结构算法,该算法的表现超过了2,048 GPU的先前最先前的最新时间。 Tutel汇总了所有技术,最终在16 GPU和2,048 GPU上分别提供了4.96倍和5.75倍的加速度,分别通过Fairseq:Meta的Facebook AI AI研究序列到序列工具Kit(Tutel(Tutel)(Tutel)(Tutel)(现在由Fairseq部分采用)。 Tutel源代码可在公共场所获得:https://github.com/microsoft/tutel。我们的评估表明,Tutel有效,有效地运行了一个基于现实的MOE模型,名为Swinv2-Moe,建立在Swin Transformer V2上,这是一种最先进的计算机视觉体系结构。在效率方面,Tutel加速了Swinv2-MoE,在FairSeq的训练和推理中分别达到1.55倍和2.11倍的速度。关于有效性,SWINV2-MOE模型在预训练和下游计算机视觉任务(例如可可对象检测)方面都比对应的密度密度模型都达到了卓越的精度,这表明Tutel准备对端到端现实世界模型训练的准备就绪和推理。 Swinv2-Moe在https://github.com/microsoft/swin-transformer中开放。
translated by 谷歌翻译
常规的自我监督单眼深度预测方法基于静态环境假设,这导致由于对象运动引入的不匹配和遮挡问题而导致动态场景的准确性降解。现有的以动态对象为中心的方法仅部分解决了训练损失级别的不匹配问题。在本文中,我们因此提出了一种新型的多帧单眼预测方法,以在预测和监督损失水平上解决这些问题。我们的方法称为DynamicDepth,是一个新框架,该框架是通过自我监督周期一致的学习方案训练的。提出了动态对象运动解开(DOMD)模块以解开对象运动以解决不匹配问题。此外,新颖的闭塞成本量和重新投射损失旨在减轻对象运动的闭塞作用。对CityScapes和Kitti数据集进行的广泛分析和实验表明,我们的方法显着优于最先进的单眼深度预测方法,尤其是在动态对象的领域。代码可从https://github.com/autoailab/dynamicdepth获得
translated by 谷歌翻译
联合学习(FL)是一种分布式机器学习技术,可以在避免明确的数据共享的同时进行协作模型培训。 FL算法的固有保护属性使其对医疗领域特别有吸引力。但是,如果有异质的客户数据分布,则标准FL方法是不稳定的,需要密集的超参数调整以实现最佳性能。常规的超参数优化算法在现实世界中的FL应用中是不切实际的,因为它们涉及大量的培训试验,而计算预算有限,这些试验通常是不起作用的。在这项工作中,我们提出了一种有效的增强学习(RL)的联合次数超参数优化算法,称为自动FEDRL,其中在线RL代理可以根据当前的培训进度动态调整每个客户的超参数。进行了广泛的实验以研究不同的搜索策略和RL代理。该方法的有效性在CIFAR-10数据集的异质数据分配以及两个现实世界中的医学图像分割数据集上进行了验证,用于胸部CT中的COVID-19变病变分段,腹部CT中的胰腺细分。
translated by 谷歌翻译
医学成像的病变分割是临床研究中的一个重要课题。研究人员提出了各种检测和分段算法来解决这项任务。最近,基于深度学习的方法显着提高了传统方法的性能。然而,大多数最先进的深度学习方法需要手动设计多个网络组件和培训策略。在本文中,我们提出了一种新的自动化机器学习算法T-Automl,不仅搜索最佳神经结构,而且还可以同时找到超参数和数据增强策略的最佳组合。该方法采用现代变压器模型,引入了适应搜索空间嵌入的动态长度,并且可以显着提高搜索能力。我们在几个大型公共病变分割数据集上验证T-Automl并实现最先进的性能。
translated by 谷歌翻译
多实例学习(MIL)是整个幻灯片图像(WSI)分类的关键算法。组织学WSIS可以具有数十亿像素,它创造了巨大的计算和注释挑战。通常,这种图像被分成一组贴片(一袋实例),其中仅提供袋级类标签。基于深度学习的MIL方法使用卷积神经网络(CNN)计算实例特征。我们所提出的方法也是基于深度学习的,随着以下两项贡献例如,肿瘤等级可以取决于WSI中不同位置的几种特定模式的存在,这需要考虑贴片之间的依赖性。其次,我们提出了基于实例伪标签的实例 - 明智函数。我们将所提出的算法与多个基线方法进行比较,在熊猫挑战数据集上评估它,该数据集是超过11K图像的最大可用的WSI数据集,并展示最先进的结果。
translated by 谷歌翻译
Feature transformation for AI is an essential task to boost the effectiveness and interpretability of machine learning (ML). Feature transformation aims to transform original data to identify an optimal feature space that enhances the performances of a downstream ML model. Existing studies either combines preprocessing, feature selection, and generation skills to empirically transform data, or automate feature transformation by machine intelligence, such as reinforcement learning. However, existing studies suffer from: 1) high-dimensional non-discriminative feature space; 2) inability to represent complex situational states; 3) inefficiency in integrating local and global feature information. To fill the research gap, we formulate the feature transformation task as an iterative, nested process of feature generation and selection, where feature generation is to generate and add new features based on original features, and feature selection is to remove redundant features to control the size of feature space. Finally, we present extensive experiments and case studies to illustrate 24.7\% improvements in F1 scores compared with SOTAs and robustness in high-dimensional data.
translated by 谷歌翻译
We summarize our TRECVID 2022 Ad-hoc Video Search (AVS) experiments. Our solution is built with two new techniques, namely Lightweight Attentional Feature Fusion (LAFF) for combining diverse visual / textual features and Bidirectional Negation Learning (BNL) for addressing queries that contain negation cues. In particular, LAFF performs feature fusion at both early and late stages and at both text and video ends to exploit diverse (off-the-shelf) features. Compared to multi-head self attention, LAFF is much more compact yet more effective. Its attentional weights can also be used for selecting fewer features, with the retrieval performance mostly preserved. BNL trains a negation-aware video retrieval model by minimizing a bidirectionally constrained loss per triplet, where a triplet consists of a given training video, its original description and a partially negated description. For video feature extraction, we use pre-trained CLIP, BLIP, BEiT, ResNeXt-101 and irCSN. As for text features, we adopt bag-of-words, word2vec, CLIP and BLIP. Our training data consists of MSR-VTT, TGIF and VATEX that were used in our previous participation. In addition, we automatically caption the V3C1 collection for pre-training. The 2022 edition of the TRECVID benchmark has again been a fruitful participation for the RUCMM team. Our best run, with an infAP of 0.262, is ranked at the second place teamwise.
translated by 谷歌翻译